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Abstract. The possibility that Schrödinger’s equation with a given potential can separate in more
than one coordinate system is intimately connected with the notion of superintegrability. Examples
of this type of system are well known. In this paper we demonstrate how to establish a complete list
of such potentials using essentially algebraic means. Our approach is to classify all nondegenerate
potentials that admit a pair of second-order constants of motion. Here ‘nondegenerate’ means that
the potentials depend on four independent parameters. This is carried out for two-dimensional
complex Euclidean space, though the method generalizes to other spaces and dimensions. We
show that all these superintegrable systems correspond to quadratic algebras, and we work out the
detailed structure relations and their quantum analogues.

1. Introduction

It has long been known that Schrödinger’s equation with certain special potentials can admit
(multiplicative) separation of variables in more than one coordinate system. This is intimately
related to the notion of superintegrability [1–3]. This subject has been studied by a number of
authors, based on the use of the corresponding differential equations that are implied by the
requirement of simultaneous separability [4–17]. Specifically, superintegrability here means
that for a Schrödinger equation in dimension N there exist 2N − 1 functionally independent
second-order quantum mechanical observables (i.e., second-order† self-adjoint operators that
commute with the Hamiltonian). There is an analogous concept of superintegrability for
classical mechanical systems. This relates to the corresponding additive separation of variables
of the Hamilton–Jacobi equation. A first step in studying separability in the classical case is to
realize that the direct formulation of the simultaneous separability requirement is not obviously
tractable. An additional observation is that if we do have simultaneous separability then the
resulting constants of motion are observed to close quadratically under repeated application
of the Poisson bracket [13]. We also know that, for spaces of constant curvature, separable
coordinate systems of the free motion are described by quadratic elements of the corresponding
first-order symmetries [18–20].

Although concrete examples of superintegrable systems are easily at hand, a complete
classification of all such systems has presented major difficulties. How can one be sure that
all systems for free motion have been found? (For example, Rañada’s classification [17] omits

† We restrict our definition to second-order symmetries because it is only these that could possibly be related to
variable separation. A classification of superintegrable systems involving observables of arbitrary order remains open
and it is not clear if our method of integrablitity conditions would be tractable in the more general case.
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our system (5a) below.) Once these are determined, how can one be sure that the most general
additive potential term has been calculated?

Here we take a new approach to the problem and apply it for the case of two-dimensional
complex Euclidean space. In section 2 we classify all nondegenerate potentials that admit
a pair of second-order constants of motion. Here ‘nondegenerate’ means that the potentials
depend on four independent parameters. The requirement that a potential admit two constants
of motion leads to two second-order partial differential equations obeyed by the potential,
and the integrability conditions for these two simultaneous equations permit us to classify
all possibilities. (The ‘direct approach’ would be to classify directly all cases in which
there are multiparameter solutions to the two coupled second-order PDEs obeyed by the
potential, each of the form (16), a very complicated procedure. We replace this procedure
by finding all solutions of the integrability conditions, (23), (24) a system of linear equations.
These equations are lengthy to write in detail (we used Maple to handle the calculations)
but straightforward to solve. Then the PDEs (16) need to be solved only for the small
number of cases in which we know that the integrability conditions are satisfied.) The
classification is greatly simplified by the equivalence of two potentials that are related by
an action of the complex Euclidean motion group. We then prove that each nondegenerate
potential is associated with a pair of constants of motion in the classical case, and a pair of
symmetry operators in the quantum case, that generate a quadratic algebra. Furthermore, we
verify that there is a one-to-one correspondence between superintegrable systems and free-
field symmetry operators that generate quadratic algebras. Finally, we demonstrate explicitly
that superintegrability implies multiseparability, i.e., separability in more than one coordinate
system.

This systematic classification approach introduces a ‘fine structure’ into our problem. It
is easy to show that potentials admitting two constants of motion cannot depend on more than
four parameters. However, potentials that depend on fewer parameters, i.e., that cannot be
embedded in a four parameter family, are not associated with a quadratic algebra.

2. Completeness in two-dimensional Euclidean space

Due to the close connection between separation of variables and constants of motion [21], a
common approach to the classification and study of superintegrable systems is to search for
potentials that permit variable separation in more than one coordinate system. The Hamilton–
Jacobi equation† is

H = p2
x + p2

y + V (x, y) =
(
∂S

∂x

)2

+

(
∂S

∂y

)2

+ V (x, y) = E. (1)

The additive separation ansatz implies a solution

S = U(u,E, α) + V (v,E, α) (2)

in a suitable coordinate system x = x(u, v), y = y(u, v). Here α is the separation constant.
In the complex Euclidean plane there are six different separable coordinate systems, listed in
the appendix, in what we take to be a standard form. One approach to our problem relates to
finding all potentials that permit separation in more than one coordinate system. Here we have
to allow for the possibility that the second coordinate system can be subjected to a Euclidean
motion consisting of a rotation through the angleβ and a translation by the vector (a, b). Due to

† Here we omit the usual 1
2 factor multiplying the kinetic energy term in both the Hamilton–Jacobi and Schrödinger

equations. Since the potentials of superintegrable systems are arbitrary up to a multiplicative factor, the 1
2 is extraneous

here.
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its complexity this is not a revealing approach. Furthermore, it does not exclude the possibility
of superintegrability without variable separation. Instead we adopt a different method, one
that does not require variable separation but that leads to it as a consequence. Furthermore, the
classification depends on nothing that is intrinsically more complicated than solving a system
of linear equations.

Let us assume that, in addition to the classical Hamiltonian, we have two quadratic
constants of motion

Lh =
2∑

k,j=1

a
kj

(h)(x, y)pkpj + W(h)(x, y) ≡ �h + W(h) h = 1, 2 (3)

which must satisfy

{H,Lh} = 0

with { } the usual Poisson bracket. We require that the set {dH, dL1, dL2} is linearly
independent, so that H,L1, L2 is a maximal set of functionally independent constants of
motion. It is clear that R = {L1, L2} is a constant of motion, so it and R2 must be expressible
as an analytic function of H,L1, L2:

R2 = F(L0, L1, L2) H ≡ L0. (4)

Note that R has the form

R =
2∑

k,l,m=1

cklmpkplpm +
2∑

k=1

dkpk (5)

but that it does not follow that R2 is necessarily a polynomial as a function of L0, L1, L2. We
will find conditions that guarantee that F is a third-order polynomial in its arguments.

Using the identity

{K,G} =
2∑

h=0

{K,Lh} ∂G

∂Lh

(6)

for a continuously differentiable function G(Lh), we find the relations

{L1, R} = 1

2

∂F

∂L2
{L2, R} = −1

2

∂F

∂L1
. (7)

Thus, the constants of motion {L1, R}, {L2, R} are easily computed once F is known. Further,
if F is a polynomial in the invariants, then so are {L1, R}, and {L2, R}.

We first determine the conditions that the function

L =
2∑

j,k=1

ajk(x, y)pkpj + W(x, y) ajk = akj (8)

must satisfy to be a constant of motion. The requirement is {H,L} = 0 where

{f, g} =
2∑

j=1

(
∂f

∂pj

∂g

∂xj

− ∂f

∂xj

∂g

∂pj

)
(x1, x2) = (x, y) (9)

and

H = p2
1 + p2

2 + V (x, y). (10)

The conditions are thus
∂a11

∂x
= 0 2

∂a12

∂x
+

∂a11

∂y
= 0

∂a22

∂y
= 0

∂a22

∂x
+ 2

∂a12

∂y
= 0

(11)
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and
∂W

∂x
− a11 ∂V

∂x
− a12 ∂V

∂y
= 0

∂W

∂y
− a12 ∂V

∂x
− a22 ∂V

∂y
= 0. (12)

The solution for the terms quadratic in the pj is

a11 = α1y
2 + α2y + α′

3 (13)

a12 = −α1xy − 1
2α2x − 1

2α4y + 1
2α5 (14)

a22 = α1x
2 + α4x + α′′

3 (15)

where the αk are constants. The requirement that ∂xWy = ∂yWx leads from (12) to the
second-order partial differential equation for the potential [22–26]
1
2 (2α1xy + α2x + α4y − α5)(Vxx − Vyy) + (α1[y2 − x2] + α2y − α4x + α3)Vxy

= (−3α1y − 3
2α2)Vx + (3α1x + 3

2α4)Vy (16)

where α3 = α′
3 − α′′

3 . We denote the solution space of this equation by

[α1, . . . , α5]. (17)

Let us now return to our assumption that the Hamilton–Jacobi equation admits two
constants of motion:

Lh =
2∑

j,k=1

a
jk

(h)pkpj + W(h) h = 1, 2.

These two operators together with H are assumed functionally independent. The constant of
motion L1 leads to the condition that the potential V belong to the solution space (17), whereas
L2 leads to the solution space

[β1, . . . , β5]. (18)

Thus the potential must lie in the intersection of the solution spaces (17) and (18). It follows
that the equations

Vxx − Vyy = AVx + BVy Vxy = CVx + DVy (19)

must hold, where

AE = 3
2H12(x

2 + y2) − 3H14xy + 3H13y − 3
2H24x + 3

2H23

BE = 3
2H14(x

2 + y2) − 3H12xy − 3H13x + 3
2H24y + 3

2H34

2CE = −3H14y
2 + (− 3

2H24 + 3H15)y + 3
2H25

2DE = 3H12x
2 + (− 3

2H24 − 3H15)x − 3
2H45

2E = −H12xy
2 + H14x

2y − H12x
3 + H14y

3 − 2H13xy + H24(x
2 + y2)

+H15(x
2 − y2) + (H34 − H25)y + (H45 − H23)x − H35

(20)

and Hk� = −H�k = αkβ� − α�βk .
From the fundamental equations (19) we can compute all of the third partial derivatives

of V . Indeed

Vxxx = (Ax + BC + Cy + C2 + A2)Vx + (Bx + DB + Dy + CD + AB)Vy

+(A + D)Vyy

Vxxy = (Cx + DC + AC)Vx + (Dx + D2 + BC)Vy + CVyy

Vxyy = (Cy + C2)Vx + (Dy + CD)Vy + DVyy

Vyyy = (−Ay + Cx + DC)Vx + (−By − AD + Dx + D2 + BC)Vy + (C − B)Vyy.

(21)
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Thus if the potential V belongs to the solution spaces (17) and (18), then V can depend on at
most three parameters, in addition to a trivial additive constant. We can choose these parameters
to be Vx(x0, y0), Vy(x0, y0), Vyy(x0, y0) for any fixed regular point (x0, y0). Then Vxx(x0, y0)

and all higher derivatives can be computed by successive differentiation of relations (21). We
require that our potential be nondegenerate, i.e., that it depend on three arbitrary parameters.

Then, the conditions ∂xVxxy = ∂yVxxx , ∂yVxxy = ∂xVxyy , ∂yVxyy = ∂xVyyy for the fourth
partial derivatives lead to the integrability conditions

∂x(2C − B) = ∂y(2D + A) (satisfied identically) (22)

Cxx − Cyy − Axy = 2CCy − DAy − 2CDx + AAy − ACx + CBy + BCy (23)

Dxx − Dyy − Bxy = −2DDx − CBx + 2DCy − BBx − BDy + DAx + ADx. (24)

Note that if we have another constant of motion L3 associated with a nondegenerate
potential, then L3 must be a linear combination of H,L1, L2. Indeed, if L3 is not a linear
combination of the basis functions, then the potential V must satisfy an equation (16) that
is linearly independent of the equations associated with L1, L2. This means an additional
constraint on the solution space and that V can depend on at most two parameters, which is a
contradiction.

We will use the conditions (23) and (24) to classify the possible potentials V and the
corresponding constants of motionL1, L2. For this we note that it is only the three-dimensional
subspace spanned by H,L1, L2 that matters; we can choose any basis for this subspace. Hence
we can replace the subspace bases (17) and (18) by linear combinations of themselves without
changing the potential. Moreover, to simplify the results we note that we can always subject
the coordinates (x, y), and L1, L2 to a simultaneous Euclidean motion, i.e., we regard all
translated and rotated potentials as members of the same equivalence class.

Multiplying both sides of (23) and (24) by E3 we obtain polynomial identities in x and y.
Equating the coefficients of the various powers xnym we obtain conditions on the parameters
Hjk . The simplest nontrivial condition, which is associated with the coefficient of a fifth-order
power in either of the equations, is

2H15(H
2
14 − H 2

12) + H24(H
2
14 + H 2

12) − 4H14H12H13 = 0. (25)

We exploit these and the remaining conditions, and Euclidean motions to classify the
possibilities for the Lj . The full conditions (23) and (24), expressed in terms of the parameter
Hij , take several pages to list and are complicated to solve in general. (Indeed a symbol
manipulation program was an important aid to our computations.) However, by dividing the
problem up into special cases and using Euclidean motions, we can simplify the conditions
and obtain a full solution. In the listing that follows we use the fact that the constants of motion
can each be expressed as a quadratic element in the enveloping algebra of the Euclidean group
in the plane with basis elements

px, py,M = xpy − ypx

to which a potential term W(x, y) is added. (Strictly speaking, conditions (23) and (24) are
only necessary conditions for existence of nondegenerate potentials. However, in our case-by-
case study we have found that they are also sufficient: all solutions of these equations lead to
nondegenerate potentials.)

Suppose I ≡ H 2
12+H 2

14 �= 0. Via an appropriate coordinate rotation through complex angle
θ we obtain a new set of equations (19) in the rotated coordinates where the new parameters
H ′

12, H
′
14 are related to the original ones by

H ′
12 = H12 cos θ + H14 sin θ H ′

14 = H14 cos θ − H12 sin θ (26)
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and for which I = I ′. Thus, by an appropriate choice of θ , we can assumeH12 = 0. (Similarly,
the translation x = x ′ + a, y = y ′ + b induces new parameters H ′

ij

H ′
12 = H12 H ′

14 = H14 H ′
13 = H13 + bH12 − aH14

H ′
15 = H15 − aH12 − bH14 H ′

24 = H24 − 2aH12 + 2bH14

H ′
45 = H45 + a(H24 + 2H15) − 2a2H12 H ′

25 = H25 + b(2H15 − H24) − 2b2H14

H ′
23 = H23 − aH24 + 2bH13 + a2H12 − 2abH14 + b2H12

H ′
34 = H34 − 2aH13 + bH24 + a2H14 − 2abH12 + b2H14

H ′
35 = H35 + a(H23 − H45) + b(H25 − H34) − a2(H15 + H24) + 2abH13 + b2(H15 − H24)

+a3H12 − a2bH14 + ab2H12 − b3H14

expressed in terms of the original Hij parameters.) Then, by an appropriate Euclidean
translation that leaves H12, H14 unchanged, it follows from (20) that we can assume
H13 = H24 = 0. Then (25) implies H15 = 0 so, since Hij = αiβj − αjβi , we can assume
H35 = H23 = 0. Further, the fourth-order integrability conditions give H34 = H45 = 0.

Case (1): H 2
12 + H 2

14 �= 0

[1, 0, 0, 0, 0] [0, 0, 0, 1, 0]. (27)

Here,

L1 = 4M2 + W(1) L2 = −2Mpy + W(2) (28)

V (x) = α√
x2 + y2

+
1√

x2 + y2

[
β√

x2 + y2 + x
+

γ√
x2 + y2 − x

]
. (29)

This potential allows separation in parabolic or polar coordinates. (Note: due to
expressions (12), it is always a straightforward integration to compute the terms W(j), and we
will not list these explicitly. Furthermore, once the constants of motion for a superintegrable
system are known, it is relatively straightforward to determine the possible separable coordinate
systems associated with this system. This is due to the fact that the constants of motion for the
separable coordinate systems are already known (see the appendix). The only complication is
that we may have to apply a Euclidean transformation to the standardized constant of motion
for the separable system to obtain the corresponding symmetry of the superintegrable system.
Here, we simply list the separable systems associated with each superintegrable system, and
provide details only in the cases where shifted coordinates occur.)

If, on the other hand, H12 = ±iH14 �= 0, then, via translation, we can assume H24 = 0.
In this case (25) implies H15 = iH13.

Case (2): H12 = ±iH14 �= 0

[1, 0, α3, 0,−iα3 − iβ2
3 ] [0,−1, β3, i, iβ3]. (30)

Here

L1 = M2 − β2
3

4
p2

+ +

(
α3

2
+

β2
3

4

)
p2

− + W(1) L2 = Mp+ +
β3

2
p2

+ + W(2) (31)

where p± = px ± ipy , z = x + iy, and z̄ = x − iy. There are two subcases to consider. If
µ = 2α3 + β2

3 �= 0, then via a rotation about the origin we achieve the following.
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Case (2a):

[1, 0, 2c2, 0, 0] [0,−1, ic, i,−c] (32)

where

L1 = M2 + c2p2
x + W(1) L2 = Mp+ +

ic

2
p2

+ + W(2)

V (x) = αz

(c2 − z2)
1
2

+
β√

(c − z)(c + z̄)
+

γ√
(c + z)(c + z̄)

.
(33)

The corresponding Hamilton–Jacobi and Schrödinger equations for this system separates in
elliptical coordinates (see the appendix), as well as shifted elliptical coordinates. In terms of the
cartesian coordinates xE , yE associated with the elliptic coordinates, the shifted coordinates are
X = xE−c, Y = yE−ic. The corresponding operator in this case is (M+ic(px +ipy))

2 +c2p2
x .

If µ = 0 we have the following.

Case (2b):

[1, 0, 2, 0, 2i] [0,−1, 2i, i,−2] (34)

where

L1 = M2 + p2
+ + W(1) L2 = (M + 2ip+)

2 + p2
+ + W(2)

V (x) = α

z2
+

β√
z3(z̄ + 2)

+
γ√

z(z̄ + 2)
.

(35)

This system separates in terms of hyperbolic coordinates (see the appendix) and displaced
hyperbolic coordinates. In terms of the cartesian coordinates xH , yH associated with the
hyperbolic coordinates, the displaced coordinates are X = xH − 2, Y = yH − 2i.

Now suppose H12 = H14 = 0.

Case (3): H12 = H14 = 0, α1 �= 0

[1, 0, 0, 0, α5] [0, 0, β3, 0, β5]. (36)

This breaks up into three subcases. A rotation through complex angle θ has the effect

H ′
15 = H15 cos 2θ + H13 sin 2θ H ′

13 = H13 cos 2θ − H15 sin 2θ H ′
24 = H24. (37)

Thus, if H 2
15 + H 2

13 �= 0 we can achieve H15 = 0. Then, we can assume via translation that
α2 = α4 = 0, so H24 = 0. An integrability condition gives H35 = 0. Thus,

Case (3a): H 2
15 + H 2

13 �= 0

[1, 0, 0, 0, 0] [0, 0, 1, 0, 0]. (38)

Here

L1 = M2 + W(1) L2 = p2
x + W(2) (39)

V (x) = α(x2 + y2) +
β

x2
+

γ

y2
. (40)

This potential permits separation in polar, elliptic and cartesian coordinates.
If, however, H15 = ±iH13 �= 0, we can again translate to get H24 = 0, and find two

possibilities, depending on whether H35 = 0. (Here case (3b) can be considered as a limit of
case (3c) as the parameter c → 0.)
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Case (3b): H 2
15 + H 2

13 = 0

[1, 0, 0, 0, 0] [0, 0, 2, 0,±2i]. (41)

Here
L1 = M2 + W(1) L2 = p2

+ + W(2)

V (x) = α
x2 + y2

(x + iy)4
+

β

(x + iy)2
+ γ (x2 + y2).

(42)

(There is a similar solution where the term p2
+ in L2 is replaced by p2

−.) The potential permits
separation in hyperbolic and polar coordinates.

Case (3c): H 2
15 + H 2

13 = 0

[1, 0, c2, 0, 0] [0, 0, 2, 0,±2i]. (43)

Here
L1 = M2 + c2p2

x + W(1) L2 = p2
+ + W(2)

V (x) = αz√
z2 − c2

+
βz̄√

z2 − c2(z +
√
z2 − c2)2

+ γ zz̄.
(44)

The potential permits separation in hyperbolic and elliptic coordinates. Indeed, instead of the
basis L1, L2 let us consider the basis M2 + c2p2

x and M2 + 1
4c

2(px − ipy)
2. Corresponding to

these operators are (1) the normal choice of elliptic coordinates and (2) the choice of hyperbolic
coordinates x = 1

2cxH and y = − i
2cyH (see the appendix).

Case (4): H12 = H13 = H14 = H15 = 0, α2 �= 0, H24 �= 0

[0, 1, 0, 0, 0] [0, 0, 0, 1, 0]. (45)

Here

L1 = −2Mpx + W(1) L2 = −2Mpy + W(2) (46)

V (x) = α√
x2 + y2

+ β
(
√
x2 + y2 + x)

1
2√

x2 + y2
+ γ

(
√
x2 + y2 − x)

1
2√

x2 + y2
. (47)

Separation of variables is possible in two types of parabolic coordinates, the usual parabolic
coordinates and the interchanged parabolic coordinates x = µν, y = 1

2 (µ
2 − ν2).

Case (5): H12 = H13 = H14 = H15 = 0, α2 �= 0, H24 = 0

[0, 1, α3, α4, α5] [0, 0, β3, 0, β5]. (48)

If (H34−H25)
2+(H45−H23)

2 �= 0 we can make a complex rotation to achieveH45 = H23. Then
we can take H25 = 1 and the constant term integrability conditions yield H34 = −H 2

23 = 1.

Case (5a): (H34 − H25)
2 + (H45 − H23)

2 �= 0

[0, 1, α3,±i, 0] [0, 0,±i, 0, 1]. (49)

Here we choose the typical case

L1 = 4iMp− + p2
+ + W(1) L2 = p2

− + W(2) (50)

V (x) = α(x − iy) + β(x + iy − 3
2 (x − iy)2) + γ (x2 + y2 − 1

2 (x − iy)3). (51)

The possible separable coordinates are semihyperbolic coordinates corresponding to operator
Mp− + p2

+ and shifted semihyperbolic coordinates with operator Mp− + δp2
− + p2

+. This
corresponds to the standard coordinates shifted via the transformation x → x + δ, y → y + iδ.
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Case (5b): (H34 − H25)
2 + (H45 − H23)

2 = 0.
Here (H34 −H25) = ±i(H45 −H23) �= 0. The constant term integrability conditions, and

a translation in y, yield the solutions

[0, 1, 0, α4, 0] [0, 0, β3, 0, 1] β3 = ±i α4 �= β3. (52)

Then, an appropriate rotation about the origin takes this to

[0, 0, 0, 1, 0] [0, 0, 1, 0,±i].

This system, for which now α2 = 0, corresponds to case (6b) below.

Case (6): H12 = H13 = H14 = H15 = 0, α2 = 0, α3 �= 0.
The constant term integrabilty condition is H45(H

2
45 + H 2

34) = 0. There are two cases.

Case (6a): H45 = 0

[0, 0, 1, 0, 0] [0, 0, 0, 1, 0]. (53)

Here

L1 = p2
x + W(1) L2 = −2Mpy + W(2) (54)

V (x) = α(4x2 + y2) + βx +
γ

y2
. (55)

The possible separable coordinates are cartesian and parabolic.

Case (6b): H45 �= 0

[0, 0, 1, 0,±i] [0, 0, 0, 1, 0]. (56)

Here we take

L1 = 2pyp+ + W(1) L2 = Mpy + W(2) (57)

V (x) = α√
x + iy

+ βx + γ
2x + iy√
x + iy

. (58)

There is the possibility of separability in parabolic coordinates {Mpy} or displaced parabolic
coordinates {(M + δ(px ± ipy))py} for suitable δ.

Now we demonstrate that there is a quadratic algebra associated with each nondegenerate
potential. Because we are working in two dimensions there can only be three functionally
independant constants at most. Consequently, all Poisson brackets must be functionally
dependent on H = L0, L1 and L2. We want to show that in fact R2 = {L1, L2}2 =
F(L0, L1, L2) is a polynomial in these variables.

Note that for arbitrary L1, L2, the F is in general not a polynomial. Consider the example

L0 = p2
x + p2

y L1 = M2 + pxpy L2 = p2
x.

Then we have R = {L1, L2} = 4Mpxpy and

R2 = F(L0, L1, L2) = 16L1L2(L0 − L2) − 16L
3
2
2 (L0 − L2)

3
2 .

Here, although F is defined and bounded at the point (L0, L1, L2) = (0, 0, 0), it is not analytic
at this point. Thus it has no power series expansion about the origin. We conjecture that this
is an illustration of the general problem: if F is not a polynomial, then there are branch points
or cuts at (0, 0, 0).
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We will show, however, that for nondegenerate potentials the associatedF is a polynomial.
First, we can verify that this is true when the potential is turned off, i.e., if we consider only
the functions

�h =
2∑

j,k=1

a
jk

(h)pkpj i = h, 2 �0 = p2
x + p2

y

where Lh = �h + W(h). Let R = {�1, �2}. Then for each of the cases listed above it is
straightforward to check that R2 = P3(�0, �1, �2) where P3 is a homogeneous third-order
polynomial in its arguments†. It follows that

R2 = F(L0, L1, L2) = P3(L0, L1, L2) + F4(s, L0, L1, L2) (59)

where F4 is a fourth-, second- and zeroth-order polynomial in the momenta px, py , and
F4(0, L0, L1, L2) = 0. Here, the parameters in the potential are denoted by s = (V 0

x , V
0
y , V

0
yy),

evaluated at some fixed point (x0, y0) and F4 is a polynomial function of these parameters.
From (7) we have

{�1,R} = 1

2

∂P3

∂�2
(�0, �1, �2)

{�2,R} = −1

2

∂P3

∂�1
(�0, �1, �2)

hence

{L1, R} = 1

2

∂P3

∂L2
(L0, L1, L2) +

1

2

∂F4

∂L2
(s)

{L2, R} = −1

2

∂P3

∂L1
(L0, L1, L2) − 1

2

∂F4

∂L1
(s)

where the ∂F4/∂Lh(s) have only terms of orders two and zero in the momenta. It follows
that the ∂F4/∂Lh(s) must be expressible as linear combinations of the Lh. This shows that
the commutators {Lh,R} can be expressed as polynomials in L0, L1, L2. It is then a simple
matter to verify that F itself is a polynomial in L0, L1, L2.

We now list the quadratic algebra relations for each of the cases studied above. In view
of relations (7) it is sufficient to give the relation R2 = F(L0, L1, L2) for each case.

Case (1): [1, 0, 0, 0, 0], [0, 0, 0, 1, 0]

R2 = 16L2
1H − 16L2

2L1 − 32(β + γ )L2
2

+64α(β − γ )L2 + 16α2L1 − 256βγH − 32α2(β + γ ).

Case (2a): [1, 0, 2c2, 0, 0], [0,−1, ic, i,−c]

R2 = 1

2
c4H 3 − 4icL3

2 + 2c2L2
2H − 4L2

2L1 − c2H 2L1 − ic3H 2L2 +
i

2
c4αH 2

+2iαc2L2
2 − c2α2L1 + ic(β2 + γ 2 − c2α2)L2

+ 1
2 (−c2β2 + c4α2 + c2γ 2)H + 1

2 (2βγ + ic2α2)c2α.

† Moreover, it is straightforward to verify that the cases corresponding to nondegenerate potentials are the only cases
where P3 is a homogeneous third-order polynomial in its arguments. Thus the possible quadratic algebras generated
by second-order elements in the Euclidean Lie algebra correspond one-to-one with nondegenerate potentials.
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Case (2b): [1, 0, 2, 0, 2i], [0,−1, 2i, i,−2]

R2 = −2L3
1 − 2L3

2 + 2L2
2L1 + 2L2

1L2 + 32αHL1

+32αHL2 − 8βγL1 + 8βγL2 + 16β2H + 16αγ 2.

Case (3a): [1, 0, 0, 0, 0], [0, 0, 1, 0, 0]

R2 = −16L2
2L1 + 16L2L1H − 16βH 2 − 16(β + γ )L2

2 − 16αL2
1 + 32HL2 + 64αβγ.

Case (3b): [1, 0, 0, 0, 0], [0, 0, 2, 0,±2i]

R2 = −16L3
1 + 32L2

1L2 − 16L2
2L1 + 16αH 2

+16βHL2 − 16βHL1 − 64αγL1 − 16β2γ.

Case (3c): [1, 0, c2, 0, 0], [0, 0, 2, 0,±2i]

R2 = 4c2L3
2 + 8c2L2

2H − 16L2
2L1 + 4c2H 2L2 + (4iβ − 2c4γ )H 2 + 8ic2αL2

2

+(4c4γ 2 − 16iβγ )L1 + (4α2c2 − c6γ 2 + 4ic2γβ)L2

+(−2c6γ 2 + 8ic2γβ + 8βα)H + 2c4α2γ − 2ic6γ 2α − 8c2αβγ − 4iα2β.

Case (4): [0, 1, 0, 0, 0], [0, 0, 0, 1, 0]

R2 = 4HL2
1 + 4HL2

2 + 4(β2 − γ 2)L2 − 8βγL1 − 4α2H − 4α(β2 + γ 2).

Case (5a): [0,−4i, 2, 1, 2i], [0, 0, 2, 0,−2i]

R2 = 64L3
2 − 64γH 2 − 128αL2

2 + 128βHL2

+64γL2L1 + 64α2L2 + 64β2L1 − 128βαH.

Case (6a): [0, 0, 1, 0, 0], [0, 0, 0, 1, 0]

R2 = 16L3
1 − 32L2

1H + 16H 2L1 − 16αL2
2 − 8βHL2 + 8βL2L1 − 64αγL1 − 4β2γ.

Case (6b): [0, 0,−2i, 0, 2], [0, 0, 0, 1, 0]

R2 = 2iL3
1 + L2

1H − βHL2 − 2iβL2L1 − γ 2L2 − iαγL1 + 1
4βα

2.

3. Quantum superintegrability in two-dimensional Euclidean space

Here we give the analogous quantum algebras for superintegrable systems arising from the
potentials we have already computed. The only difference is that the Poisson bracket is now
replaced by the commutator bracket [A,B] = AB − BA and the operators H,L1 and L2 are
the obvious (formally self-adjoint) symmetry partial differential operators:

H = ∂2
x + ∂2

y + V (x, y) Lh =
2∑

k,j=1

∂k(a
kj

(h))∂j + W(h)(x, y) h = 1, 2. (60)

Just as for the Hamilton–Jacobi case, if we have another constant of motion L associated with
a maximal potential, then L must be a linear combination of H,L1, L2. Indeed, if L is in
self-adjoint form, then the conditions that [H,L] = 0 are identical with (11) and (12). Thus,
if L is not a linear combination of the basis functions, then the potential V must satisfy an
equation (16) that is linearly independent of the equations associated with L1, L2. This means
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an additional constraint on the solution space and that V can depend on at most two parameters,
which is a contradiction.

Furthermore the proof of the existence of quadratic algebra relations at the end of section 2
goes through almost unchanged for the operator case: [L1, L2]2 = R2 and [L1, R], [L2, R]
can be expressed as (symmetric) polynomials in the operators H,L1, L2. To make the prior
construction go through, one need only note that since R2 is a formally self-adjoint sixth-order
differential symmetry operator, the fifth-order terms are fixed linear functions of the sixth-
order terms. The expressions {A,B} = AB + BA and {A,B,C} = ABC + CAB + BCA are
operator symmetrizers. The explicit relations are as follows.

Case (1):

[L2, R] = 8L2
2 + 8HL2 + 8α2

[L1, R] = 8{L2, L1} + 16(1 + 2β + 2γ )L2 + 32α(γ − β)

R2 = 16L2
1H − 8

3 {L2, L2, L1} − 16(2β + 2γ + 11
3 )L2

2 − 176
3 HL1 + 64α(β − γ )L2

+16α2L1 + (− 32
3 + 96γ + 96β + 256βγ )H − 32

3 α2(3β + 3γ − 1).

Case (2a):

[L1, R] = − 1
2 ic3H 2 − 6icL2

2 + 2c2HL2 − 2{L1, L2}
+(2iαc2 − 1)L2 − 1

2 ic3α2 + 1
2 icβ2 + 1

2 icγ 2

[L2, R] = 1
2c

2H 2 + 2L2
2 + 1

2c
2α2

R2 = 1
2c

4H 3 − 4icL3
2 + 2c2L2

2H − 2
3 {L1, L1, L2} − c2H 2L1 − ic3H 2L2

+

(
i

2
c2α +

1

12

)
H 2 +

(
2iαc2 − 11

3

)
L2

2 − c2α2L1

+ic(β2 + γ 2 − c2α2)L2 + 1
2 (−c2β2 + c4α2 + c2γ 2)

+ 1
2 (2βγ + ic2α2 + 1

12α)c
2α.

Case (2b):

[L1, R] = L2
1 − 3L2

2 + {L1, L2} + 16αH + L1 − L2 + 4β, γ

[L2, R] = 3L2
1 − L2

2 − {L1, L2} − 16αH + L1 − L2 + 4β, γ

R2 = −2L3
1 − 2L3

2 + 1
3 {L2, L2, L1} + 1

3 {L1, L1, L2} − 11
3 L2

1 − 11
3 L2

2

+32αHL1 + 32αHL2 + 11
3 {L1, L2} − 8γβL1 + 8γβL2

+(− 16
3 α + 16β2)H + 16αγ 2.

Case (3a):

[L2, R] = −8L2
2 + 8HL2 − 16αL1 + 8α

[L1, R] = −8HL1 + 8{L2, L1} − 8(1 + 2β)H + 16(1 + β + γ )L2

R2 = − 8
3 {L2, L2, L1} + 8H {L2, L1} − 4(3 + 4β)H 2 − 16(β + γ − 11

3 )L2
2 − 16αL2

1

+16

(
2β +

11

3

)
HL2 +

176

3
αL2 + 16α

(
3β + 3γ + 4βγ +

2α

3

)
.
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Case (3b):

[L2, R] = −8L2
2 − 32αγ

[L1, R] = 16{L2, L1} − 8βH + 16L2

R2 = − 8
3 {L2, L2, L1} + 16αH 2 − 176

3 L2
2 + 16βHL2 − 64αγL1 + ( 64

3 αγ − 16β2γ ).

Case (3c):

[L2, R] = L2
2 + 8iβγ − 2c4γ 2

[L1, R] = 2c2H 2 + 6c2L2
2 + 8c2HL2 − 8{L1, L2}

+(−16 + 8ic2α)L2 − 1
2c

6γ 2 + 2α2c2 + 2ic2βγ

R2 = 4c2L3
2 + 8c2L2

2H − 8
3 {L2, L2, L1}

+4c2H 2L2 + (4iβ − 2c4γ )H 2 + (8ic2α − 176
3 )L2

2

+(4c4γ 2 − 16iβγ )L1 + (4α2c2 − c6γ 2 + 4ic2γβ)L2

+(−2c6γ 2 + 8ic2γβ + 8βα)H + 2c4α2γ − 2ic6γ 2α

−8c2αβγ − 4iα2β − 4

3
γ 2c4 +

16i

3
βγ.

Case (4):

[L2, R] = 4HL1 − 4βγ

[L1, R] = −4HL2 + 2(γ 2 − β2)

R2 = 4L2
1H + 4L2

2H + 4H 2 + 4(β2 − γ 2)L2 − 8βγL1 − 4α2H − 4α(γ 2 + β2).

Case (5a):

[L2, R] = 32γL2 + 32β2

[L1, R] = −96L2
2 − 64βH + 128αL2 − 32γL1 − 32α2

R2 = 64L3
2 − 64γH 2 − 128αL2

2 + 128βHL2 + 32γ {L2, L1} + 64α2L2

+64β2L1 − 128βαH − 256γ 2.

Case (6a):

[L2, R] = 8H 2 + 24L2
1 − 32L1H + 4βL2 − α(24 + 32γ )

[L1, R] = 4βH + 16αL2 − 4βL1

R2 = 16L3
1 − 32HL2

1 + 16H 2L1 − 16αL2
2 − 8βHL2 + 4β{L2, L1}

−(64αγ + 176α)L1 + 128αH − (4γβ2 + 3β2).

Case (6b):

[L2, R] = 3iL2
1 + HL1 − iβL2 − i

2
αγ

[L1, R] = 1
2βH + iβL1 + 1

2γ
2

R2 = 2iL3
1 + L2

1H − βHL2 − iβ{L2, L1} − γ 2L2 − iαγL1 + 1
4 (β

2 + α2β).

We note that the quadratic relations in the quantum case provide useful information relating
the special functions that occur as (separable) eigenfunctions for each superintegrable case [16].
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4. Conclusions

In this paper we have used the concept of a ‘nondegenerate potential’ to add structure to
the study of superintegrable classical and quantum mechanical systems in E(2, C). We have
shown how to classify all such systems in a straightforward manner, so that gaps can be avoided.
Furthermore, we have shown the following:

(1) Each system is associated with a pair of constants of motion in the classical case, and a
pair of symmetry operators in the quantum case, that generate a quadratic algebra.

(2) There is a one-to-one correspondence between superintegrable systems and free-field
symmetry operators that generate quadratic algebras.

(3) Second-order superintegrability implies multiseparability, i.e., separability in more than
one coordinate system.

In a forthcoming paper we will prove the analogous results for superintegrable systems
on the complex 2-sphere.
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Appendix

As is well known [4, 18, 20] there are essentially six coordinate systems on the complex
Euclidean plane in which the free-particle Hamilton–Jacobi equation separates: cartesian,
polar, parabolic, elliptic, hyperbolic and semi-hyperbolic. We describe these coordinate
systems and their corresponding free-particle constants of motion L. (We adopt the basis
px, py,M = xpy − ypx for the Lie algebra e(2, C) and define p± = px ± ipy .) There is
one orbit of constants of motion, with representative Mp+, that is not associated with variable
separation [21]. The systems are as follows.

Cartesian coordinates

x, y L = p2
x. (61)

Polar coordinates

x = r cos θ y = r sin θ L = M2. (62)

Parabolic coordinates

xP = 1
2 (ξ

2 − η2) yP = ξη L = Mpy. (63)

Elliptic coordinates

(in algebraic form)

x2
E = c2(u − 1)(v − 1) y2

E = −c2uv

L = M2 + c2p2
x.

(64)
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Hyperbolic coordinates

xH = r2 + r2s2 + s2

2rs
yH = i

r2 − r2s2 + s2

2rs
L = M2 + p2

+.

(65)

Semi-hyperbolic coordinates

xSH = − 1
4 (w − u)2 + 1

2 (w + u) iySH = − 1
4 (w − u)2 − 1

2 (w + u)

L = 2Mp+ + p2
−.

(66)
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